EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-TR-210788

Scalable Parallel Algebraic
Multigrid Solvers

Randolph Bank, Shaoying Lu, Charles Tong,
Panayot Vassilevski

March 24, 2005

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

SCALABLE PARALLEL ALGEBRAIC MULTIGRID SOLVERS

RANDOLPH E. BANK *, SHAOYING LU f, CHARLES TONG ¥, AND PANAYOT S.
VASSILEVSKI §

Abstract. We propose a parallel algebraic multilevel algorithm (AMG), which has the novel
feature that the subproblem residing in each processor is defined over the entire partition domain,
although the vast majority of unknowns for each subproblem are associated with the partition owned
by the corresponding processor. This feature ensures that a global coarse description of the problem
is contained within each of the subproblems. The advantages of this approach are that interprocessor
communication is minimized in the solution process while an optimal order of convergence rate is
preserved; and the speed of local subproblem solvers can be maximized using the best existing
sequential algebraic solvers.

Key words. Algebraic multigrid algorithm, Parallel efficiency, Domain decomposition, Bank—
Holst algorithm.

AMS subject classifications. 65N50, 65N30

1. Introduction. The numerical solution of linear systems arising from the dis-
cretization of partial differential equations(PDEs) is often the most computationally
expensive part of scientific applications. On single-processor computers, the Krylov
subspace methods with multigrid preconditioners have been shown to have optimal
complexity in both memory and time consumption. Geometric multigrid (GMG)
methods are very efficient for solving a large class of problems. However, in some
cases, a GMG method may not be a good candidate for a solver or preconditioner.
For example, the linear system could have no underlying hierarchy of grids; the finite
element discretization could have very complex geometry, so the coarsest problem is
too large to solve by a direct solver or a classical iterative method; constructing an
efficient smoothing operator for 3D anisotropic problems is not an easy task. With
the potential of overcoming these difficulties, algebraic multigrid (AMG) methods are
of particular interest. Another reason the AMG method is popular is because it can
be used as a “black box” solver, requiring only a matrix and a right hand side vector
as input.

The AMG method was introduced in the 1980’s [8, 9, 10, 11] and developed into
a fairly general algorithm immediately afterward [24, 25, 26, 28]. There had been no
substantial development in this field until the mid-1990’s, when a strong increase of
interest in AMG methods occurred [7, 12, 13, 14, 15, 23, 27, 29]. Some applications of
AMG methods can be found in [18, 21, 22]. Sequential AMG methods differ in the way

*Department of Mathematics University of California, San Diego La Jolla, California 92093-0112.
email:rbank@ucsd.edu. The work of this author was supported by the National Science Foundation
under contract DMS-0208449, and through the UCRP program at Lawrence Livermore National
Laboratory. The UCSD Scicomp Beowulf cluster was built using funds provided by the National
Science Foundation through SCREMS Grant 0112413, with matching funds from the University of
California at San Diego.

fDepartment of Mathematics University of California, San Diego La Jolla, California 92093-
0112. email:sylu@math.ucsd.edu. The work of this author was supported by the National Science
Foundation under contract DMS-0208449, and through the UCRP program at Lawrence Livermore
National Laboratory.

fCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, email:
chtong@IlInl.gov

§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, email: vas-
silevskil@llnl.gov

the interpolation operators and the hierarchy of stiffness matrices are constructed. In
the literature, Ruge and Stiiben [25] give a review of the classical AMG algorithms;
Stiiben [27] is an updated review of AMG methods for people with background in
GMG methods. Several parallel algebraic multigrid algorithms have been developed
for today’s large scale parallel computers [16, 17, 19, 30]. Great effort has been
devoted to improving parallelization efficiency, or scalability, of these methods. A
major obstacle for the scalability of multilevel PDE solvers is the inter-processor
communication cost, especially at coarser levels.

In this paper we propose a parallel algebraic multilevel algorithm for use as a
solver or as a preconditioner in conjunction with an iterative method. This parallel
multilevel solver differs from traditional parallel solvers in that each subproblem by
itself is a specially coarsened version of the global problem, which contains unknowns
from all partitions. On each processor, the local problem consists of fine unknowns
belonging to its own partition and coarse unknowns from all other partitions. In other
words, the global problem is coarsened outside a given partition to produce a local
problem. Here we note that the terminology, “local”, is used throughout this paper
to refer to a subject that is stored on the current processor. A local problem is a
problem stored on the current processor. It may contain unknowns from neighboring
partitions; it may even contain unknowns from all partitions. On the other hand,
a global problem is a problem stored across all processors, which always contains
unknowns from all partitions.

Our algorithm is designed to reduce the global communication cost during itera-
tive solving steps. We solve the global problem by solving a partially-fine, partially-
coarse local problem on each processor, as a preconditioner. Since each local problem
is stored completely on a single processor, no communication is required within one
iteration. A direct motivation of our algorithm is the geometric parallel multigrid
algorithms described in [2, 3, 4, 5, 6], where the algorithms are proposed for solving
partial differential equations using parallel adaptive meshing scheme. The conver-
gence of this type of algorithms is backed by the multigrid convergence theory: high
frequency error is resolved by locally fine unknowns; low frequency error is resolved
by globally coarse unknowns.

In section 2, we will describe the algorithm of constructing two-level and three-
level parallel preconditioners. Local interpolation operators will be derived from a
global interpolation operator. Using various two-level and three-level interpolation
operators, local stiffness matrices and vectors will be computed. Local problems are
solved on each processor and local solutions are collected to obtain a global update of
the solution. In section 3 we will discuss parallel implementation details in terms of
matrix and vector data structure. The algorithms for building various local stiffness
matrices and vectors will be presented, algorithm complexity will be discussed. In
section 4, we present numerical results on scalability, in iteration counts and solution
time. We study the three-level solver with and without a two-level coarser solver,
in comparison with BoomerAMG, see [1] [17]. Our implementation is built on top
of the HYPRE library developed in the Center for Applied Scientific Computing of
the Lawrence Livermore National Laboratory. The global interpolation operators are
generated using parallel an algebraic coarsening scheme implemented in Boomer AMG.

2. Parallel AMG Algorithms. Both classic AMG and GMG algorithms con-
sist of two phases: initialization and iterative solving. In the initialization phase, a
hierarchy of interpolation matrices and stiffness matrices are generated. In the solving
phase, high frequency errors and low frequency errors are reduced by the interaction

2

of smoothing and coarse grid correction. In GMG, since the interpolation operators
are determined by the underlying geometry, an appropriate smoothing operator must
be chosen to produce geometrically smooth error. AMG differs from GMG in that
no geometric grids are given. As a result, a good interpolation operator can be con-
structed such that the smooth error is well represented by the coarse subspace; the
smoothing operator may be as simple as a Gauss-Seidel iteration.

Existing parallel AMG methods distribute the work load of initialization and
iterative solution among different processors on a parallel cluster, with a communicate-
when-necessary approach. First, with p processors, the unknowns of the linear system
Ax = fis divided into p partitions; each partition is assigned to one processor. Second,
the interpolation operators I} 1 are generated at all levels by coarsening the matrix
A in parallel. I} +1 maps unknowns from the level [+1 to a coarser level [; the level 0
is the finest. The stiffness matrices 4;41 = (I})AL ! 41 are generated at all levels as
well. Finally, the problem is solved using a standard multilevel scheme. In this type of
algorithm, both 4; and I} 1 are parallel matrices. A parallel matrix is typically stored
row-wise or column-wise. Each processor owns the rows/columns corresponding to its
own partition. As a result, each matrix-vector multiplication requires inter-processor
communication. Communication may be the dominant cost at coarser levels, where
each processor contains only a few unknowns.

Our proposed parallel AMG algorithms try to reduce the communication com-
plexity of the solving stage by restricting the communication to no more than two
levels of the multigrid hierarchy. It differs from the existing parallel AMG methods in
the way that coarser level stiffness matrices are constructed and stored. We coarsen
the global stiffness matrix only outside the current partition, and store the partially
coarsened matrix completely on the current processor. At a fixed level [, we denote
the interpolation operator, between the level [and the finest level, by P. P is a global
parallel matrix which is the product of ! global interpolation operators I9I} --- I} 1.
The local stiffness matrix A, on the processor p is then computed using P. A, con-
sists of fine unknowns from the partition owned by the current processor, and coarse
unknowns at level [, from the partitions owned by the remaining processors. This
local problem can then be solved by a direct solver or a sequential multilevel solver.
Since A, is a sequential matrix stored completely on processor p, the solution of a
local problem does not require any communication.

The unknowns contained in the local problems of our proposed two-level and
three-level algorithms are illustrated in figure 2.1, where the global unknowns are
divided into 25 partitions. For two-level algorithms, the local stiffness matrix A,
consists of fine unknowns from the partition p and coarse unknowns from all other
partitions. In three-level algorithms, the local stiffness matrix A, consists of fine
unknowns from the partition p and coarse unknowns from only the neighboring par-
titions. The unknowns from other partitions are discarded.

Comparing to an existing parallel AMG algorithm, our proposed algorithm will
consume more time and memory in its initialization phase, due to the fact that the
local stiffness matrix A, has to be formed after the usual AMG initialization. However,
we expect our algorithm to be more efficient during the solution phase since less
communication is required at each iteration. This property makes our algorithm
especially attractive for problems where one initialization stage is followed by repeated
solving steps. For example, it is well suited for solving time dependent problems,
where the same stiffness matrix is used for every time step.

3

two-level algorithms Three—level algorithms

Zer

Coarse Coarse

Fine Fine

Fi1c. 2.1. Unknowns contained in two-level and three-level algorithms

2.1. Interpolation Matrix P. The global interpolation matrix P is a parallel
matrix. P can be written as

ST 2T
U oY

where P,. is associated with unknowns in the current partition. P,, connects fine
unknowns in the current partition to coarse unknowns from other partitions. On the
other hand, P,. describes how the fine unknowns from other partitions depend on
the coarse unknowns in the current partition. P,, is associated with the unknowns
outside the partition p.

A one dimensional example with geometric interpretation is given below. Let the
4

matrix P be:

: |
1.0 |
0.75 0.25 |
05 0.5 |
0.25 0.75 |
1.0 |
1.0 |
— — — — + — — —
P= 075 | 025 . (2.1)
05 | 05
025 | 0.75
| 1.0
| 0.75 0.25
| 05 05
| 025 0.75
| 1.0
I | : o

An underlying 1-d mesh is shown in figure 2.2. The mesh is partitioned into two

sub_region 1 / sub_region 2

Fi1G. 2.2. One dimensional grid coarsened

subregions by a dashed line. Coarse grid points are represented by bars and fine grid
points by circles. As shown in figure 2.2, as well as in equation 2.1, the fine unknowns
of the first subregion are not connected to the second subregion, while three fine
unknowns in the second subregion depend on a coarse unknown in the first subregion.

2.2. Two-level Coarsening Algorithm . In this subsection we describe sev-
eral two-level coarsening algorithms, to compute the local stiffness matrix A, from
the interpolation operator P. First, we construct a local interpolation matrices mp.
On processor p, the matrix 7, will be used to compute A,

— t
A, = 7rpA7rp.

Since 7, is also an interpolation operator, it is required to satisfy the following criteria.
1. The entries of 7, have values between 0 and 1.
2. The row sums of the matrix are 1.
3. Since the set of coarse unknowns is a subset of the unknowns of the original
linear system, 7, has one and only one entry 1 at each column.

5

The matrix P partitioned as

P.. P, _ Pc
P‘[Poc Poo]‘[Po]’ (22)

we describe three variations of the interpolation matrix mp. All of them restrict
coarsening to the unknowns outside the current partition, by substituting [I 0]
for P. in P. They differ in the way that the connections between fine unknowns
outside and coarse unknowns inside partition p are treated.

1. This connection is completely ignored by eliminating the block P,..

= [! OPOO] . (2.3)

2. Alternatively, let

= [é 0130] (2.4)

where P, consists of the nonzero columns of P,. The connection is cut off
implicitly by duplicating the unknowns inside partition p, which influence
the unknown outside this partition. It seems that equation 2.4 will yield an
algorithm which converges faster than that derived from equation 2.3, because
the information in P, is retained. However, it has the potential of producing
a singular matrix A, since this formulation duplicates the unknowns on the
interface of partition p.
3. Let

I 0
7i'p == |: poc Poo :|) (2.5)

where P,. = P,.T, where T maps coarse unknowns to their globally fine
indices. This choice of m, combines the good qualities of both 2.3 and 2.4.
This algorithm converges fast; it always produces a nonsingular local stiffness
matrix. However, the underlying algorithm is expensive to implement, within
the parallel data structures of HYPRE. Nevertheless, it is easy to implement
the algorithm in the context of our three-level algorithms.
Once the local interpolation matrix , is chosen, the parallel AMG algorithm can
be defined.
ALGORITHM 2.1. (Solve linear system Au = f, initial guess u = ug.)
o [Initialization:
1. generate matriz A, = ! Am,;
2. compute initial residual r = f — A x ug.
e Solve (iterates until converges):
1. compute local right hand side r, =
2. solve local problem Apu, = rp;
3. form global update du = Rpu,, where R, restricts u, to fine unknowns
owned by processor p;
4. update solution u and right hand side r.
Given the interpolation matrix F; at a coarsening levels [, the matrices 7, can be
constructed to compute the local problems A,u, = r,. The convergence rate of the
two-level algorithms improves as the coarsening level [decreases. On the other hand,

6

r;

because more unknowns are present in the local problems, the memory complexity
and the operator complexity increases, especially when there is a large number of
processors.

2.3. Three-level Algorithms. The content of the local stiffness matrix A,
corresponding to the three-level algorithms is shown in figure 2.1. The matrix consists
of fine unknowns in partition p, coarse unknowns in the neighboring partitions and no
unknowns elsewhere. In principle, based on any of the two-level algorithms described
in 2.2, we can construct a three-level local interpolation matrix by cutting off the
out-layer of unknowns from a two-level local interpolation matrix. However, since
equation 2.4 is very likely to produce a singular local stiffness matrix, it will not
be chosen to generate a three-level interpolation operator. In practice, we consider
only equations 2.3 and 2.5 as candidates for constructing a three-level interpolation
matrix.

To introduce the three-level algorithm, we write the global interpolation matrix
as a 3 x 3 block matrix, where the unknowns are grouped by the current partition,
the neighboring partitions and the other partitions.

PCC PCTL PCO
pP= Pnc Pnn Pno
POC Pon POO
The local interpolation matrix derived from equation 2.3 is
I 0 0
=10 P 0. (2.6)
0 0 0
Similarly, the local interpolation matrix derived from equation 2.5 is
I 0 0
Tp=| Pl Ppp 0. (2.7
0 0 0

As in the two-level case, the three-level local interpolation matrix 7, can be
constructed at any given level [. The convergence of the algorithm speeds up as [
decreases. At the same time, the operator complexity increases. The difference is
that, in the three-level algorithms, each partition has a fixed number of neighbors,
which is independent of the number of processors. Hence we will have better control on
the increase of the operator complexity, when [is reduced to obtain faster convergence.

The corresponding iterative algorithm is again given by algorithm 2.1. Since
the local stiffness matrices corresponds to only the unknowns of the current and the
neighboring partitions in this algorithm, we expect the iteration count to grow as a
logarithmic function of the number of global unknowns. To improve the scalability, a
global coarse solver will be required to resolve the global smooth error.

2.4. Overlapping Schwartz Method. Because the three-level algorithm re-
quires a global coarse grid correction, we use an overlapping Schwartz method, with
the local problems overlapping on the neighboring partitions. Here we propose to
use one of the three-level algorithms as the local smoothing operator, with only mild
coarsening on the neighboring partitions; we use one of the two-level algorithms in 2.2
as the global coarse grid correction, with more aggressive coarsening outside a given
processor. The following algorithm describes the overlapping Schwartz method:

ALGORITHM 2.2. (Solving Au = f using initial guess u = ug)

7

o Initialization
1. Form the three-level local stiffness matriz, with the local interpolation
matriz defined as in equation 2.4, at coarsening level ;
2. form the two-level local stiffness matriz, with local interpolation matriz
defined as in equations 2.3, or in 2.5, at coarsening level 21;
3. compute the initial residual r = f — Auyg.
o Main iteration
1. Solve for the update du, using the three-level local stiffness matriz and
algorithm 2.1, at coarsening level [;
2. update the solution u and the residual r;
3. solve for du using the two-level local stiffness matriz and algorithm 2.1,
at coarsening level 21;
4. update the solution u and the residual r.

3. Parallel Implementation. The parallel implementation is built on the HYPRE[

library developed in the Center for Applied Scientific Computing of Lawrence Liv-
ermore National Laboratory. The coarsening algorithm uses the parallel algebraic
solver /preconditioner BoomerAMG to generate multiple levels of global interpolation
matrices P, and global stiffness matrices A;, where [stands for the level of coarsening.

In sections 2.2 and 2.3, our proposed two-level and three-level algorithms were
described together with the formulation of the local interpolation matrices m,. In
practice, the local interpolation matrices are formed explicitly only in the three-level
algorithms. In the two-level algorithms, the local stiffness matrices A, and the local
residuals 7, are constructed directly from P; and A;, using 7, implicitly. We describe
below the detailed algorithms for constructing A, and rp.

3.1. Two-level Algorithms. The specific parallel algorithm used to construct
the local stiffness matrix and the local residual is strongly influenced by the parallel
data structure used in the HYPRE library. In HYPRE, a parallel matrix is stored row-
wise; each processor owns the rows corresponding to its own partition. If a parallel
matrix M is written as:

(3.1)

M:[MCC MCO]:[MC]
MOC MOO MO ’

with the unknowns from the current partition ordered first, then the current processor
owns M., or, M., and M,,. The matrices A, P and Pt!AP are stored in this parallel
data structure. All blocks of the globally coarse stiffness matrix P! AP can be made
accessible to all processors through global communication, which will not be expensive
since the global coarse matrix is assumed to have only a few unknowns. Similarly, a
parallel vector can be written as

v:[”c]; (3.2)

the entries owned by the current processor are denoted by v.. The coarse vector Py
is made accessible to all processors as well.

For the simplicity of notation, we present the following algorithms under the
assumption that the matrix A is symmetric. They can be generalized to the non-
symmetric case with ease. The block structure of A, is the same as that of M in
equation 3.1. Since all the unknowns are stored on the pth processor, an additional

8

subscription p will be used. Similarly, the block structure of r, is also the same as
that of v in equation 3.2, with an extra subscription p.

If 7, is given by equation 2.3, the blocks of the matrix A, and the vector r, are
computed using:

ALGORITHM 3.1. (Setup up local matriz and residual for equation 2.3)

1. Ap,cc = Acc;’

2. Ap,co = (AP)C - AccPco;'

3. Apoc = Aé,co;

4 Ao = (BEAP),, — PL(AP). + AL, Pa
5. Tpe=Te¢;

6. rpo = (Pir)y — Pl re.

If 7, is chosen as in equation 2.4, we compute A, and 7, by computing their blocks
individually.
ALGORITHM 3.2. (Setup up local matriz and residual for equation 2.4)
1. Ap,cc = Acc;
2. Apeo = (AP). — A Py,

where P is the columns of P, which corresponds to the nonzero columns of

PO;
8 Apoe=AL
4. Apoo = P'AP — PY(AP). — ApocPe;
5. Tpe=Tc¢;
6. rpo = P'r — Plr..

If 7, is given by equation 2.5, we notice that 7, can be obtained from its counterpart
in equation 2.4 by adding up the columns corresponding to the duplicated interface
unknowns. As a result, the local stiffness matrix and local residual can be obtained
by designated row and column summations of the output of algorithm 3.2
ALGORITHM 3.3. (Setup up local matriz and residual for equation 2.5)
1. Compute A, and r, using algorithm 3.2;
2. if the ith row A, ; and the jth row A, ; correspond to the same unknown at
the interface of the current partition, let A, ; = Ap; + Ap; and delete A, ;;

3. repeat step 2 for the columns of A,;

4. repeat step 2 for entries of rp.

Assume the stiffness matrix has a fixed number of nonzeros per row. The mem-
ory complexity and the operator complexity of this algorithm is proportional to the
number of unknowns per processor, which is bounded by the sum of the number of
unknowns from the current partition and the number of coarse unknowns outside the
current partition.

3.2. Three-level Algorithms. With a small coarsening level [, the two-level
algorithm has good convergence rate in numerical experiments. However, as the
number of processors grows, the local problem size increases significantly; solving
local problems on each processor becomes more expensive. To reduce the expense
of solving local problems, we introduced the three-level algorithm, where the local
stiffness matrices consist of fine unknowns in the current partition, coarse unknowns at
the level [in the neighboring partition. The unknowns from the remaining partitions
are ignored. The three levels are fine, coarse and zero, as in figure 2.1.

For the three-level algorithms, we write a parallel matrix M in 3 x 3 blocks

Mcc Mcn Mco
M = Mnc Mnn Mno
Moc Mon Moo

9

The expanded matrix on processor p consists of fine unknowns in the current partition
and neighboring partition.

_ Mcc Mcn
Mesp = [Mpe M |-

To generate matrix A, at level I, we first build parallel matrices Cy and C; to col-
lect expanded matrix A, and P.,;, on each processor. Then we assemble a sequential
matrix megp to coarsen A.zp, in the neighboring partition.

At level I, Cy is generated according to how processor p is related to its neighboring
processors. If processor p is connected to processors ¢ and j, then we put identities
to (s,p), (s +1,4) and (s + 2, j) blocks of the pth partition of the parallel matrix Cf,
where the row index s is given by an increment by one of the largest row index of
partition p— 1. The expanded stiffness matrix and the expanded interpolation matrix
are given by

Apeap = (CGACo) e (3.3)
Ppesp = (CoPIC)) -

Whether processor p is connected to processor i is determined by examining the level-]
global interpolation matrix P;. If the (p,) block of P, is nonzero, then p is connected
to ¢. This relationship is not necessary symmetric, e.g., p is connected to 7 does not
indicate that 4 is connected to p.

A detailed example for computing the matrix C? is described here. Processor 1 is
connected to processors 2 and 3; processors 2, 3 and 4 are separated from each other,
see figure 3.1. The matrix C* has four partitions. Identities are given to (1,1), (2,2),
(3, 3) blocks of the first partition. (4,2), (5,3) and (6, 4) blocks are given to partitions
2, 3 and 4 respectively.

ct=|l0o I 0 0

Since all the interpolation information in the expanded partitions is available
locally, in the matrix P, ¢qp, it is easy to generate the local expanded interpolation
matrix mp eqp. We compute sequential matrix m.;, according to equation 2.6 or 2.7.
No communication is require at this step. The algorithm for building A, and r, is
then given below:

ALGORITHM 3.4. (Setup up local matriz and residual for equation 2.3 or 2.5)
At level I, generate parallel matrices C§ and C};
compute Aegp and Pegp;
generate Tegzp;
compute Ap = 7k, AcapTeap using equations 3.3;

— ot ¢
compute rp = Wy, (CGT)c-

Crds fo do

10

Fi1G. 3.1. Connected and isolated processors

As in section 3.1, the memory and computation complexity is proportional to
the number of unknowns per processor. In the three-level algorithms, the number
of unknowns per processor is the sum of the number of unknowns in the current
partition and the number of coarse unknowns from the neighboring partitions. The
operator complexity is proportional to the number of unknowns per processor. The
communication complexity is proportional to the number of coarse unknowns outside
the current partition on each processor.

The complexity of the sequential AMG algorithms is usually measured with two
indicators: the rate of convergence and the operator complexity. The first factor is
equivalent to the iteration count of an algorithm; the second one is equivalent to the
computing time per iteration; and their product gives the total computing cost of the
solving stage. However, to measure the complexity of a parallel algorithm, we need
to introduce a third factor, which is the communication complexity. Together with
the operator complexity, the communication complexity decides the computing time
required for each iteration. Our parallel AMG algorithm aims at reducing the total
solving time by doing the majority of communication in the initialization stage. In
the solving stage, the communication complexity is reduced to be comparable to that
of a simple iterative method.

3.3. FocusDD Library. This parallel domain decomposition solver /preconditioner]]
is implemented using object oriented programming in the C language. A library called
FocusDD is built on the HYPRE library. The interface functions are
solver = hypre_FocusDDCreate() ;
hypre_FocusDDSetup(solver);
hypre_FocusDDSolve(solver, A, f, u);
hypre_FocusDDDestroy(solver);

Because this solver is not symmetric, the GMRES method rather than the CG method
is used to accelerate convergence.

4. Numerical Results. The 3D discrete Poisson equation is solved with our
proposed algorithms. A scalability study is conducted with varying number of un-
knowns and processors. The number of unknowns per processor ranges from 1k to
10k; the number of processors ranges from 2 to 128. The domain of the PDE is parti-

11

tioned into cubic subdomains to test scalability. The iteration counts and computing
time needed to obtain a residual norm reduction of 1078 is compared with that of
BommerAMG. The tests were run on a Linux-based Beowulf cluster, consisting of 16
dual 100MB CISCO 2950G Ethernet switch. This cluster runs NAPACI rocks version
of Linux (based on RedHat7.1), and employs the MPICH implementation of message
passing interface (MPI).

TABLE 4.1
FocusDD solver, type 0

np | npp | iter vy setup time | solve time
2 1000 | 11 | 0.47 0.18 0.05
4 1000 | 12 | 0.25 0.27 0.07
8 1000 | 17 | 0.43 0.96 0.23
16 | 1000 | 18 | 0.40 2.37 0.40
32 | 1000 | 17 | 0.39 5.46 0.67
64 | 1000 | 22 | 0.43 49.55 3.62
TABLE 4.2

FocusDD solver, type 1

np | npp | iter vy setup time | solve time
2 1000 | 9 | 0.20 0.22 0.05
4 1000 | 10 | 0.16 0.32 0.06
8 1000 | 14 | 0.39 1.53 0.20
16 | 1000 | 15 | 0.35 2.63 0.36
32 | 1000 | 15 | 0.35 6.29 0.78
64 | 1000 | 17 | 0.43 53.08 2.97
128 | 1000 | 17 | 0.45 355.17 7.47
TABLE 4.3

FocusDD solver, type 2

np | npp | iter | y | setup time | solve time
2 | 1000 | 13 | 0.25 0.26 0.07
4 | 1000 | 13 | 0.33 0.33 0.10
8 | 1000 | 22 | 0.48 1.60 0.31
16 | 1000 | 24 | 0.66 2.52 0.55
32 | 1000 | 23 | 0.40 37.48 1.19
64 | 1000 | 29 | 0.63 44.61 4.62

The convergence behavior of the algorithms implemented in FocusDD is shown
in tables 4.2-4.5. The convergence result of BoomerAMG is shown in table 4.6, as
a reference. In the header, np, stands for the number of processors; npp stands
for the number of unknowns per processor; iter stands for the number of iterations
required to reduce the residual norm by a factor of 10~¢; stands for the approximate
convergence factor; setup time and solve time give the time used in the initialization
stage and the solving stage, respectively, in seconds.

Among the FocusDD solvers, solver types 0-2 are two-level algorithms. Type 0
uses the local interpolation matrix 7, in equation 2.3; type 1 uses 7, in equation 2.4;

12

TABLE 4.4
FocusDD solver, type 3

np | npp | iter vy setup time | solve time
2 1000 | 1 | 0.00 0.17 0.01
4 1000 | 3 | 0.00 0.36 0.05
8 1000 | 7 | 0.39 0.86 0.17
16 | 1000 | 13 | 0.20 2.61 0.33
32 | 1000 | 20 | 0.55 5.04 0.55
64 | 1000 | 38 | 0.78 22.68 1.61
128 | 1000 | 80 | 0.81 67.29 3.70
TABLE 4.5
FocusDD solver, type 4
np | npp | iter | v | setup time | solve time
2 1000 | 9 | 0.20 0.20 0.05
4 1000 | 10 | 0.16 0.33 0.08
8 1000 | 14 | 0.39 1.07 0.21
16 | 1000 | 15 | 0.35 2.60 0.35
32 | 1000 | 15 | 0.35 7.83 0.69
64 | 1000 | 17 | 0.43 55.51 3.09

type 2 uses 7, in equation 2.5. Types 3 and 5 are three-level algorithms. In both
types, mp is chosen as in equation 2.7. The difference between these two types is the
following: type-3 solver extends the local stiffness matrix to the whole neighboring
partitions; type-5 solver only extends the local stiffness matrix to a few layers into the
neighboring partitions. Type-4 solver uses the overlapping Schwartz method described
in section 2.4. In every iteration, it uses a two-level type-1 solver, followed by a three-
level type-3 solver.

In the two-level algorithms, as npp = 1000, the iteration count grows slowly as
np increases from 2 to 128, see tables 4.2—4.3. However, the solving time per iteration
grows fast, since the size of the global coarse problem increases together with np.
Therefore, the total solving time increases regardless of the iteration counts. The
results of BoomerAMG solver is shown in table 4.6. In comparison, BoomerAMG
uses less setup time, but more solve time than FocusDD. The result of a three-level
algorithm is shown in table 4.4. Tts solving time is about half of that of Boomer AMG,
when np = 4, 8,16. The difference becomes larger when np is greater than 16.

An additive Schwartz algorithm is also tested, results shown in table 4.5. In each
iteration, this algorithm includes a three-level solver followed by a two-level solver.
These two solvers are accelerated by the GMRES method. level = 1 is chosen for
the neighboring partition, in the three-level solver. The coarsest level is chosen for
the two-level solver. The iteration counts is almost stable; yet computing time per
iteration increases slightly as np increases. Among the five algorithms in FocusDD,
the three-level algorithm in table 4.4 is the most efficient in solving time.

The above results are summaries in figures 4.1 and 4.2. As can be seen from
figure 4.1, BoomerAMG has a constant iteration count 1, for np = 2,--- ,64. In
FocusDD, both the two-level algorithms and the overlapping Schwartz method have
an almost constant iteration count. The iteration count of the three-level algorithm
grows with np. However, in terms of solving time, the three-level algorithm is the

13

TABLE 4.6
BoomerAMG solver

np | npp | iter 5y setup time | solve time
2 1000 | 1 | 0.00 0.05 0.01
4 1000 | 1 | 0.00 0.11 0.14
8 1000 | 1 | 0.00 0.42 0.31
16 | 1000 | 1 | 0.00 1.44 0.67
32 | 1000 | 1 | 0.00 3.32 1.41
64 | 1000 | 1 | 0.00 18.17 5.73
128 | 1000 | 1 | 0.00 59.70 20.57

most efficient, see figure 4.2. All five types of solvers implemented in FocusDD require
less solving time than Boomer AMG.

407,

-Q- type 0, FoucsDD
¥ type 1
35| 4~ type 2
—+ type 3
-©- type 4
-©- BoomerAMG

30n

0 10 20 30 40 50 60 70
np

Fi1G. 4.1. Iteration counts, npp = 1000.

As npp = 10000, it is not appropriate to use the three-level algorithm which ex-
tends the local problem to one coarser level of all the neighboring partitions, since the
communication cost will be quite daunting. Instead, we restrict the extension to only
a few layers outside the current partition. In our test problem, it is 4 layers. Table 4.7
shows the results of BoomerAMG, as a reference. Table 4.8 shows the results of Fo-
cusDD, using the three-level algorithm with 4 expanding layers. FocusDD uses less
time per iteration, which indicates that the stepwise computing and communication
complexity are less than that of BoomerAMG. However, since the iteration counts of
FocusDD is much bigger. BoomerAMG seems to be more efficient than FocusDD in
both setup time and solving time.

Based on the above observation, our proposed algorithm is indeed effective in re-
ducing stepwise communication complexity during solving stage. However, the other
two measures of parallel efficiency, computing complexity and convergence rate, may
suffer. Another problem is that the initialization stage is quite expensive. Future
work will be directed to improving these aspects. For example, it is possible to de-

14

6r

-Q- type 0, FoucsDD
¥ type 1l
-+ type?2
5[| 4 type 3
-©- type 4
-©- BoomerAMG

IS

solve time
w

np

F1G. 4.2. Solving time, npp = 1000.

TABLE 4.7
BoomerAMG solver
np | npp iter y setup time | solve time
2 10000 1 0.00 0.85 0.79
4 10000 1 0.00 1.42 1.03
8 10000 1 0.00 5.70 2.09
16 | 10000 1 0.00 15.48 3.47
32 | 10000 1 0.00 29.17 5.10
64 | 10000 1 0.00 162.73 16.07

sign an algorithm which generates an hierarchy of extended stiffness matrices and
interpolation matrices directly from the results of BoomerAMG, eliminating the need
of re-initialization by the multigraph solver. Furthermore, since the complete infor-
mation about the hierarchy of stiffness matrices is retained, this new design has a
potential to be as efficient as the domain decomposition GMG solvers presented in
[6, 20].

REFERENCES

[1] HYPRE library. http://www.llnl.gov/CASC/hypre/.

[2] R. E. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms. SIAM J.
on Scientific Computing, 22:1411-1443, 2000.

[3] R. E. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms. SIAM
Rev., 45(2), 2003.

[4] R. E. Bank and P. K. Jimack. A new parallel domain decomposition method for the adaptive
finite element solution of elliptic partial differential equations. Concurrency, to appear.

[5] R.E. Bank, P. K. Jimack, S. Nadeem, and N. S.V. A weakly overlapping domain decomposition
preconditioner for the finite element solution of elliptic partial differential equations. SIAM
J. on Scientific Computing, to appear.

[6] R.E. Bank and S. Lu. A domain decomposition solver for parallel adaptive meshing paradigm.
SIAM J. Sci. Comput., 26:105-127, 2004.

15

TABLE 4.8
FocusDD solver, type 5.

np | npp iter y setup time | solve time
2 10000 | 4 | 0.02 13.03 0.78
4 | 10000 | 5 | 0.02 17.57 1.17
8 10000 | 17 | 0.28 37.47 5.91
16 | 10000 | 20 | 0.37 53.35 8.28
32 | 10000 | 22 | 0.53 71.84 9.80
64 | 10000 | 42 | 0.78 229.67 26.64

[7] D. Braess. Towards algebraic multigrid for elliptic problems of second order. Computing,
55:379-393, 1995.

[8] A. Brandt. Algebraic multigrid theory: The symmetric case. In Preliminary porceedings for
the international multigrid conference, Copper Mountain, Colorado, 1983.

[9] A. Brandt. Algebraic multigrid (AMG) for sparse matrix equations. In D. Evans, editor,
Sparsity and its applications (Loughborough, 1983), pages 257-284. Cambridge University
Press, Cambridge, 1985.

[10] A. Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math. Comput., 19:23-56,
1986.

[11] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for automatic
multigrid solutions with applications to geodetic computations. Report, 1982.

[12] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, and J. W. Ruge. Algebraic multigrid based on element interpolation(AMGe).
SIAM J. Sci. Comput., 22:1570-1592, 2000.

[13] Q. Chang and Z. Huang. Efficient algebraic multigrid algorithms and their convergence. SIAM
J. Sci. Comput., 24(2):597-618 (electronic), 2002.

[14] Q. Chang, Y. S. Wong, and H. Fu. On the algebraic multigrid method. J. Comput. Phys.,
125(2):279-292, 1996.

[15] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick,
G. N. Miranda, and J. W. Ruge. Robustness and scalability of algebraic multigrid. SIAM
J. Sci. Comput., 21(5):1886-1908 (electronic), 2000. Iterative methods for solving systems
of algebraic equations(Copper Mountain, CO, 1998).

[16] G. Haase, M. Kuhn, and S. Reitzinger. parallel algebraic multigrid methods on distributed
memory computers. SIAM J. Sci. Comput., 24(2):410-427, 2002.

[17] V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver and precon-
ditioner. Appl. Numer. Math., 41:155-177, 2002.

[18] R. Kimmel and I. Yavneb. An algebraic ultigrid approach for image analysis. SIAM J. Sci.
Comput., 24(4):1218-1231, 2003.

[19] A. Krechel and Stiiben. Parallel algebraic multigrid based on subdomain blocking. Parallel
Comput., 27:1009-1031, 2001.

[20] S. Lu. Scalable parallel multilevel algorithms for solving partial differential equations. PhD
thesis, University of California, San Diego, 2004.

[21] S. Meynen, A. Boersma, and P. Wriggers. Application of a parallel algebraic multigrid method
for the solution of elastoplastic shell problems. Numer. Linear Algebra Appl., 4(3):223-238,
1997.

[22] M. Raw. A coupled algebraic multigrid method for the 3D Navier-Stokes equations. In Fast
solvers for flow problems (Kiel, 1994), volume 49 of Notes Numer. Fluid Mech., pages
204-215. Vieweg, Braunschweig, 1995.

[23] S. Reitzinger and J. Schoberl. An algebraic multigrid method for finite element discretizations
with edge elements. Numer. Linear Algebra Appl., 9(3):223-238, 2002.

[24] J. W. Ruge and Stiiben. Efficient solution of finite difference and finite element equations by
algebraic multigrid (AMG). In D. J. Paddon and H. Holstein, editors, Multigrid methods
for integral and differential equations, The Institute of Mathematics and its Applications
Conference Series, pages 169-212. Clarendon Press, Oxford, 1985.

[25] J. W. Ruge and Stiiben. Algebraic multigrid. In S. McCormick, editor, Multigrid methods,
pages 73-130. Philandelphia, PA, 1987.

[26] K. Stiiben. Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput.,
13:419-452, 1983.

16

[27] K. Stiiben. A review of algebraic multigrid. J. Comput. Appl. Math., 128(1-2):281-309, 2001.
Numerical analysis 2000, Vol. VII, Partial differential equations.

[28] K. Stiiben, U. Trottenberg, and K. Witsch. Software development based on multigrid tech-
niques. In B. Enquist and T. Smedsaas, editors, Proceedings IFIP-Conference on PDE
software, modules, interfaces and systems, Soderkoping, Sweden, 1983.

[29] P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second
and fourth order elliptic problems. Computing, 56:179-196, 1996.

[30] C. Wagner. On the algebraic construction of multilevel transfer operators. Computing, 65:73—
95, 2000.

17

